- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
The value of $\left| {\begin{array}{*{20}{c}}
1&x&y\\
2&{\sin x + 2x}&{\sin y + 2y}\\
3&{\cos x + 3x}&{\cos y + 3y}
\end{array}} \right|$ is
A
$cos(x + y)$
B
$cos(xy)$
C
$sin(x + y)$
D
$sin(x - y)$
Solution
$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1} $ and $ \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-3 \mathrm{R}_{1}$
$\left|\begin{array}{ccc}{1} & {x} & {y} \\ {0} & {\sin x} & {\sin y} \\ {0} & {\cos x} & {\cos y}\end{array}\right|=\sin (x-y)$
Standard 12
Mathematics