The value of $\left| {\begin{array}{*{20}{c}}
1&x&y\\
2&{\sin x + 2x}&{\sin y + 2y}\\
3&{\cos x + 3x}&{\cos y + 3y}
\end{array}} \right|$ is
$cos(x + y)$
$cos(xy)$
$sin(x + y)$
$sin(x - y)$
The determinant $\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&2&3\\1&3&6\end{array}\,} \right|$ is not equal to
If $\alpha+\beta+\gamma=2 \pi$, then the system of equations
$x+(\cos \gamma) y+(\cos \beta) z=0$
$(\cos \gamma) x+y+(\cos \alpha) z=0$
$(\cos \beta) x+(\cos \alpha) y+z=0$
has :
The following system of linear equations $7 x+6 y-2 z=0$ ; $3 x+4 y+2 z=0$ ; ${x}-2{y}-6{z}=0,$ has
The system of equations $\begin{array}{l}\alpha x + y + z = \alpha - 1\\x + \alpha y + z = \alpha - 1\\x + y + \alpha z = \alpha - 1\end{array}$ has no solution, if $\alpha $ is
Let $k_1$, $k_2$ be the maximum and minimum values of $k$ for which the system of equations given by
$x + ky = 1$ ; $kx + y = 2$; $x + y = k$ are consistent then $k_1^2 + k_2^2$ is equal to